skip to main content


Search for: All records

Creators/Authors contains: "Darling, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present observations of population anti-inversion in the 31− 40A+transition of CH3OH (methanol) at 107.013831 GHz toward the Galactic center cloud G0.253+0.016 (“The Brick”). Anti-inversion of molecular level populations can result in absorption lines against the cosmic microwave background (CMB) in a phenomenon known as a “dasar.” We model the physical conditions under which the 107 GHz methanol transition dases and determine that dasing occurs at densities below 106cm−3and column densities between 1013and 1016cm−2. We also find that for this transition, dasing does not strongly depend on the gas kinetic temperature. We evaluate the potential of this tool for future deep galaxy surveys. We note that other works have already reported absorption in this transition (e.g., in NGC 253), but we provide the first definitive evidence that it is absorption against the CMB rather than against undetected continuum sources.

     
    more » « less
  2. Abstract

    Infrared observations of stellar orbits about Sgr A* probe the mass distribution in the inner parsec of the Galaxy and provide definitive evidence for the existence of a massive black hole. However, the infrared astrometry is relative and is tied to the radio emission from Sgr A* using stellar SiO masers that coincide with infrared-bright stars. To support and improve this two-step astrometry, we present new astrometric observations of 15 stellar SiO masers within 2 pc of Sgr A*. Combined with legacy observations spanning 25.8 yr, we reanalyze the relative offsets of these masers from Sgr A* and measure positions and proper motions that are significantly improved compared to the previously published reference frame. Maser positions are corrected for epoch-specific differential aberration, precession, nutation, and solar gravitational deflection. Omitting the supergiant IRS 7, the mean position uncertainties are 0.46 mas and 0.84 mas in R.A. and decl., and the mean proper motion uncertainties are 0.07 mas yr−1and 0.12 mas yr−1, respectively. At a distance of 8.2 kpc, these correspond to position uncertainties of 3.7 and 6.9 au and proper motion uncertainties of 2.7 and 4.6 km s−1. The reference frame stability, the uncertainty in the variance-weighted mean proper motion of the maser ensemble, is 8μas yr−1(0.30 km s−1) in R.A. and 11μas yr−1(0.44 km s−1) in decl., which represents a 2.3-fold improvement over previous work and a new benchmark for the maser-based reference frame.

     
    more » « less
  3. Abstract

    We present 0.″22-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2−1) emission from the circumnuclear gas disk in the red nugget relic galaxy PGC 11179. The disk shows regular rotation, with projected velocities near the center of 400 km s−1. We assume the CO emission originates from a dynamically cold, thin disk and fit gas-dynamical models directly to the ALMA data. In addition, we explore systematic uncertainties by testing the impacts of various model assumptions on our results. The supermassive black hole (BH) mass (MBH) is measured to beMBH= (1.91 ± 0.04 [1σstatistical]0.51+0.11[systematic]) × 109M, and theH-band stellar mass-to-light ratioM/LH= 1.620 ± 0.004 [1σstatistical]0.107+0.211[systematic]M/L. ThisMBHis consistent with the BH mass−stellar velocity dispersion relation but over-massive compared to the BH mass−bulge luminosity relation by a factor of 3.7. PGC 11179 is part of a sample of local compact early-type galaxies that are plausible relics ofz∼ 2 red nuggets, and its behavior relative to the scaling relations echoes that of three relic galaxy BHs previously measured with stellar dynamics. These over-massive BHs could suggest that BHs gain most of their mass before their host galaxies do. However, our results could also be explained by greater intrinsic scatter at the high-mass end of the scaling relations, or by systematic differences in gas- and stellar-dynamical methods. AdditionalMBHmeasurements in the sample, including independent cross-checks between molecular gas- and stellar-dynamical methods, will advance our understanding of the co-evolution of BHs and their host galaxies.

     
    more » « less
  4. Abstract

    We present 3D velocity measurements and acceleration limits for stars within a few parsec of the Galactic Center (GC) black hole, Sgr A*, based on observations of 43 and 86 GHz circumstellar maser emission. Observations were taken with the Very Large Array in 2013, 2014, and 2020 and with the Atacama Large Millimeter/submillimeter Array in 2015 and 2017. We detect 28 masers in total, of which four are new detections. Combining these data with extant maser astrometry, we calculate stellar proper motions and accelerations with uncertainties as low as ∼10μas yr−1and 0.5μas yr−2, respectively, corresponding to approximately 0.5 km s−1and 0.04 km s−1yr−1at a distance of 8 kpc. We measure radial velocities from maser spectra with ∼0.5 km s−1uncertainties, though the precision and accuracy of such measurements for deducing the underlying stellar velocities are limited by the complex spectral profiles of some masers. We therefore measure radial acceleration limits with typical uncertainties of ∼0.1 km s−1yr−1. We analyze the resulting 3D velocities and accelerations with respect to expected motions resulting from models of the mass distribution in the GC.

     
    more » « less
  5. Abstract The detection of the accelerated expansion of the Universe has been one of the major breakthroughs in modern cosmology. Several cosmological probes (Cosmic Microwave Background, Supernovae Type Ia, Baryon Acoustic Oscillations) have been studied in depth to better understand the nature of the mechanism driving this acceleration, and they are being currently pushed to their limits, obtaining remarkable constraints that allowed us to shape the standard cosmological model. In parallel to that, however, the percent precision achieved has recently revealed apparent tensions between measurements obtained from different methods. These are either indicating some unaccounted systematic effects, or are pointing toward new physics. Following the development of CMB, SNe, and BAO cosmology, it is critical to extend our selection of cosmological probes. Novel probes can be exploited to validate results, control or mitigate systematic effects, and, most importantly, to increase the accuracy and robustness of our results. This review is meant to provide a state-of-art benchmark of the latest advances in emerging “beyond-standard” cosmological probes. We present how several different methods can become a key resource for observational cosmology. In particular, we review cosmic chronometers, quasars, gamma-ray bursts, standard sirens, lensing time-delay with galaxies and clusters, cosmic voids, neutral hydrogen intensity mapping, surface brightness fluctuations, stellar ages of the oldest objects, secular redshift drift, and clustering of standard candles. The review describes the method, systematics, and results of each probe in a homogeneous way, giving the reader a clear picture of the available innovative methods that have been introduced in recent years and how to apply them. The review also discusses the potential synergies and complementarities between the various probes, exploring how they will contribute to the future of modern cosmology. 
    more » « less
  6. Abstract

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined (i∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s−1in NGC 1380 and ∼500 km s−1in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yieldsMBH= 1.47 × 108Mwith a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement ofMBH. However, our model fits require a value forMBHin the range of (1–3) × 109Min NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)